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Lighting, shading, re�ectance



Papers

�Deriving intrinsic images from image sequences,�

I Yair Weiss. ICCV 2001

�Estimating intrinsic images from image sequences
with biased illumination,�

I Matsushita, Lin, Kang, Shum. ECCV 2004

�Estimating intrinsic component images using
non-linear regression,�

I Tappen, Adelson, and Freeman. CVPR 2006

�User-assisted intrinsic images�

I Bousseau, Paris, and Durand. SIGGRAPH Asia 2009



Intrinsic images

An image is decomposed into a re�ectance image and
an illumination image

I An ill-posed problem I (x , y) = R(x , y)L(x , y)

A useful midlevel description of scenes

I Viewpoint dependent

I The physical causes of changes in illumination at di�erent
points are not made explicit



Advantages of the intrinsic representation

I The task of segmentation may be poorly de�ned on the
input image and many segmentation algorithms make use
of arbitrary thresholds in order to avoid being fooled by
illumination changes

I On an intrinsic re�ectance image even primitive
segmentation algorithms would correctly segment the
region of an object



Advantages of the intrinsic representation (cont.)

View-based template matching and shape-from-shading would
be less brittle if they could work on the intrinsic image
representation rather than on the input image



Deriving intrinsic images from image sequences

Given a sequence of T images {I (x , y , t)}Tt=1
in which the

re�ectance is constant over time and only the illumination
changes, can we then solve for a single re�ectance image
R(x , y) and T illumination images {L(x , y , t)}Tt=1

?

I (x , y , t) = R(x , y)L(x , y , t)

The problem is still ill-posed: at every pixel there are T

equations and T + 1 unknowns. One can simply set
R(x , y) = 1 and L(x , y , t) = I (x , y , t).



Example



ML estimator assuming sparseness

Transform the problem into log domain

i(x , y , t) = r(x , y) + `(x , y , t).

To make the problem solvable, we want to assume a
distribution over `(x , y , t).



First thought

I Illumination images are of lower contrast than re�ectance
images?

I It is rarely true for the outdoor scenes

I Edges due to illumination often have as high a contrast as
those due to re�ectance changes



Statistics of natural images

When derivative �lters are applied to luminance in natural
images (in log domain), the �lter outputs tend to be sparse.

I Peaked at zero and fall o� much faster than a Gaussian



Lecture videos about natural images

Yair Weiss and Bill Freeman: What makes a good
model of natural images? (CVPR 2007)

I Weiss's talk given at UC Berkeley on February 20, 2007

I http://www.archive.org/details/Redwood_

Center_2007_02_20_Yair_Weiss

From Learning Models of Natural Image Patches to
Whole Image Restoration

I Zoran's talk given at UC Berkeley on March 1, 2012

I http://archive.org/details/Redwood_Center_

2012_03_01_Daniel_Zoran

http://www.archive.org/details/Redwood_Center_2007_02_20_Yair_Weiss
http://www.archive.org/details/Redwood_Center_2007_02_20_Yair_Weiss
http://archive.org/details/Redwood_Center_2012_03_01_Daniel_Zoran
http://archive.org/details/Redwood_Center_2012_03_01_Daniel_Zoran


Fit by a Laplacian distribution

Laplacian distribution

P(x) =
1

Z
e−α|x |

p.d.f.



How to use the sparseness property?

Assume we have N �lters {fn} and we denote the �lter
outputs by on(x , y , t) = i ? fn.

We use rn to denote the re�ectance image �ltered by the nth
�lter rn = r ? fn.



Claim 1

Assume �lter outputs applied to `(x , y , t) are Laplacian
distributed and independent over space and time. Then the
maximum likelihood (ML) estimate of the �ltered re�ectance
image r̂n are given by

r̂n(x , y) = mediant on(x , y , t) .



Proof of Claim 1

Assuming Laplacian densities and independence yields the
likelihood

P(on|rn) =
1

Z

∏
x ,y ,t

e−β|on(x ,y ,t)−rn(x ,y)|

=
1

Z
e−β

∑
x,y,t |on(x ,y ,t)−rn(x ,y)| .

Maximizing the likelihood is equivalent to minimizing the sum
of absolute deviations from on(x , y , t). The sum of absolute
values (or L1-norm) is minimized by the median.



What does Claim 1 imply?

Claim 1 gives us the ML estimate for the �ltered re�ectance
images r̂n. To recover an estimated re�ectance r̂n, we solve the
overconstrained systems of linear equations

fn ? r̂ = r̂n .



Over-constrained linear system



What does Claim 1 imply?

Claim 1 gives us the ML estimate for the �ltered re�ectance
images r̂n. To recover an estimated re�ectance r̂n, we solve the
overconstrained systems of linear equations

fn ? r̂ = r̂n .

It can be shown that the pseudo-inverse solution is given by

r̂ = g ?

(∑
n

f rn ? r̂n

)

with f rn the reversed �lter of fn : fn(x , y) = f rn (−x ,−y) and g

a solution to

g ?

(∑
n

f rn ? fn

)
= δ .



Note



Note



Note



Example



Claim 2

Let pε = P(|fn ? `(x , y , t)| < ε). Then the estimated �ltered
re�ectances are within ε of the true �ltered re�ectances with
probability at least

P(|r̂n − r ∗n | < ε) =

T/2∑
k=1

(
T

k

)
(1− pε)

kp(T−k)
ε ,

or, equivalently,

P(|r̂n − r ∗n | < ε) =
T∑

k=T/2

(
T

k

)
(1− pε)

(T−k)pkε .



Proof of Claim 2

If more than 50% of the samples of fn ? `(x , y , t) are within ε
of some value, then by the de�nition of the median, the
median must be within ε of that value. The claim follows from
the binomial formula for the sum of T independent events.



Details



Toy example



Yale face database

I 64 images taken with variable lighting



UC Berkeley webcam



What if the illumination is biased?

Estimating intrinsic images from image sequences
with biased illumination

I Matsushita, Lin, Kang, Shum. ECCV 2004



Intrinsic images

I (x , y , t) = ρ(x , y)L(x , y , t)

= ρ(x , y){LD(x , y , t) + α(x , y , t)}
= ρ(x , y){E (t)g(x , y , t)(n(x , y) · l(t)) + α(x , y , t)}
= ρ(x , y)E (t){g(x , y , t)(n(x , y) · l(t)) + α

′
(x , y , t)}

ρ(x , y): re�ectance
E (t): illumination intensity
g(x , y , t): binary shadow map
n(x , y): surface normal
l(t): illumination direction
α(x , y , t): ambient light



Review: �ltered re�ectance and �ltered illumination

log ρ̂n(x , y) = mediant{fn ? log I (x , y , t)}

log L̂n(x , y , t) = fn ? log I (x , y , t)− log ρ̂n(x , y)

(log ρ̂, log L̂) = h ?

(∑
n

f rn ? (log ρ̂n, log L̂n)

)

h ?

(∑
n

f rn ? fn

)
= δ



Unbiased illumination samples

For two adjacent pixels with intensities I1(t) and I2(t)

ρ̂n = median
I1(t)

I2(t)
= mediant

ρ1
ρ2
· E (t){g1 · (n1 · l(t)) + α

′
1
}

E (t){g2 · (n2 · l(t)) + α
′
2
}

Assumption: cast shadows do not a�ect the median

unbiased illumination samples:

medianl(t)∈Ωt
n1 · l(t)− n2 · l(t) = 0

ρ̂n = ρ1/ρ2



Biased illumination

ρ̂n 6= ρ1/ρ2



Hard constraints
Inter-frame constraint (constant re�ectance)

Ip(ti)

Ip(tj)
=

Lp(ti)

Lp(tj)
, 0 ≤ i , j < N, i 6= j .

N: # of observations

Inter-pixel constraint

Ip(ti)

Iq(ti)
=
ρp
ρq
· Lp(ti)

Lq(ti)
, 0 ≤ i < N, q ∈ ωp .

ωp: neighborhood

∑
p,i ,j :i 6=j

(
Ip(ti)

Ip(tj)
− Lp(ti)

Lp(tj)

)2

+
∑

p,q,i :q∈ωp

(
Ip(ti)

Iq(ti)
− ρp
ρq
· Lp(ti)

Lq(ti)

)2

= 0 .



Flatness

epq(ti) =

∣∣∣∣arctan{mediant ( Ip

Iq

)}
− arctan

{
Ip

Iq

}∣∣∣∣
ξpq(ti) =

{
1 (epq(ti) < ε : accept)
0 (epq(ti) ≥ ε : reject)

fpq =

(∑
i ξpq(ti)

N

)2



Energy minimization based on smoothness

constraints

EΩ =
∑
p

Ep(∆ρp,∆Lp(t))

=
∑
p

∑
q∈ωp

{(ρp − ρq)2 + λfpq(ti)(Lp(ti)− Lq(ti))2}

Hessian matrix

Hp =

[
∂2Ep/∂ρ

2 ∂2Ep/∂ρ∂L
∂2Ep/∂L∂ρ ∂2Ep/∂L

2

]
=

[ ∑
q∈ωp

1 0

0 λ
∑

q∈ωp
fpq

]
convex



Algorithm

Step 1: Initialization

Step 2: Hard constraints



Step 2: Hard constraints



Algorithm

Step 3: Energy minimization by the conjugate
gradient method

EΩ =
∑
p

Ep(∆ρp,∆Lp(t))

=
∑
p

∑
q∈ωp

{(ρp − ρq)2 + λfpq(ti)(Lp(ti)− Lq(ti))2}

Go back to Step 2 if not converges



Results



Learning from data

Estimating Intrinsic Component Images Using
Non-Linear Regression

I Tappen, Adelson, and Freeman. CVPR 2006



Estimating Intrinsic Component Images Using

Non-Linear Regression
Estimate a set of local linear constraints, such as the
derivatives, using local image data

I Estimate the �ltered versions of the intrinsic component
image

I Use training data to learn to predict the derivatives of the
shading and re�ectance images, rather than basing the
estimates on a simple model of the world.

Solve for the image that best satis�es these
constraints, by using a method akin to a
pseudo-inverse

I Horizontal and vertical derivatives are di�erently weighted



Creating shading and re�ectance data of real-world

surface

I How to create ground-truth demopositions

I A piece of paper colored with a green marker

I The green channel, containing no markings, is used as the
shading image



Locally estimating constraint values

I Using a patch of the observed image to estimate a
particular pixel of the �ltered intrinsic component image



Learning the estimator

I Training pairs of observed patches and �ltered intrinsic
components

I Minimize the square error

E =
M∑
i

(r(oi)− ci)
2

r(o) =

∑N

i=1

(
e−

∑
j (p

j
i
−oj )2

)
f Ti o∑N

i=1
e−

∑
j (p

j
i
−oj )2

choose N prototype patches {pi} and coe�cients {fi} using a
boosting algorithm



Reconstructing the image

Weighted least squares

x̂ = (CTWC )−1CTWĉ

W is block-diagonal

C =

[
Cdx

Cdy

]
Cdx and Cdy denote the matrices that express the 2D image
convolution with each �lter as a matrix

ĉ =

[
ĉdx
ĉdy

]
ĉ contains estimated derivatives



Results



Application to denoising

Use di�erent types of image patches and �lters to learn an
estimator for denoising



User-assisted intrinsic images



MIT intrinsic images

I http://people.csail.mit.edu/rgrosse/intrinsic

http://people.csail.mit.edu/rgrosse/intrinsic


Summary

Find an estimate of �ltered intrinsic image

Reconstruct the intrinsic image from the �ltered
version


	Lighting, shading, reflectance

